1. Kevin decides to take a job with a company that sells magazine subscriptions. He is paid $\$ 20$ for the day and then earns $\$ 1.50$ for each subscription he sells for the day.
a. Create a table of values showing how much he makes for each number of magazines.

Number of subscription sold	0	1	2	3	4
Amount of pay for the day	$\$ 20$	$\$ 21.50$	$\$ 23.00$	$\$ 24.50$	$\$ 26.00$
$20+1(1.50)$					$20+2(1.50)$

b. Write a recursive function for the amount of money Kevin can earn selling magazines.

$$
t_{n+1}=t_{n}+1.50
$$

c. Write an explicit function rule for the $\mathrm{n}^{\text {th }}$ term in the sequence describing the amount of money Kevin can earn. Describe any domain restrictions in your rule. How is this rule related to the rule you wrote in the previous question?

$$
\begin{array}{cc}
t_{n}= & 20+1.50 \\
\uparrow & \uparrow \\
1^{5 T} \text { TERM } & \text { JUST USE " } n \text { " } B / C \text { WE STARED AT } t_{0}
\end{array}
$$

d. How much does Kevin earn if he sells 100 magazine subscriptions? Which rule did you use to answer this question? Why?

$$
\begin{aligned}
& t_{100}=20+1.50(100)=\$ 170 \\
& \text { THE EXPLICIT FORMULA IS MORE EFFICIENT }
\end{aligned}
$$

e. Kevin is trying to earn enough money to buy a new smart phone. He needs $\$ 225$ to cover the cost and tax on the phone. How many magazine subscriptions does Kevin need to sell to buy his new smart phone?

$$
\begin{array}{lrl}
22 S & =2 \varnothing+1 . S n \\
-20 & & \text { KEVIN NEEDS } \\
\frac{205}{1.5}=\frac{1.5 n}{1.5} & & \text { TO SELL } 137 \\
136 . \overline{6}=n & & \text { MAGAZINE } \\
\text { SUBSCRIPTIONS. }
\end{array}
$$

2. Your phone service allows you to add international long distance to your phone. The cost is a $\$ 5$ flat fee each month and $3 \notin$ a minute for calls made. Write a recursive rule describing your monthly cost for international calls. Then, write a function rule for the n minutes of calls made in a month.

$$
\begin{aligned}
& \text { RECURSIVE: } t_{n+1}=t_{n}+.03 \\
& \text { EXPLICIT: } t_{n}=5+.03 n
\end{aligned}
$$

3. Alex started a business making bracelets. She sold 30 bracelets the first month. Her goal is to sell 6 more bracelets each month than she sold the previous month. If Alex meets her goal, what is the total number of bracelets she will sell in the first 12 months? How could you go about figuring this out? Can you find a formula?

$$
t_{n+1}=t_{n}+6 \quad 6(126)=756 \text { BRACELETS ARTY SERIES: } \frac{n}{2}\left(a_{1}+a_{n}\right)
$$

4. A person was studying a population of a city and noticed that the city's population was growing a consistent rate of 20% per year and could be modeled by the recursive definition $P_{n+1}=\underline{1.20} \cdot P_{n}$.
What is the growth factor? 1. 20
If the population is 22,400 this year, what would the population for each of the next 3 years (assuming the population continues to follow the suggested model)?

$$
\begin{aligned}
& P_{0}=22.400 \\
& P_{1}=1.2(22400)=26880 \\
& P_{2}=1.2(26880)=32256
\end{aligned}
$$

$$
\begin{aligned}
P_{3} & =1.2(32256) \\
& \approx 38,707
\end{aligned}
$$

5. A student is playing with pennies to model population growth. The student starts with 2 pennies and flips them at the same time. Another coin is added to the pile of coins for every coin that lands head up (coin flip simulator http://www.shodor.org/interactivate/activities/Coin/).

- What should the growth factor be in theory? IN GREIAING BR 50\% MEANS GROWTH FACTOR 1.5
- Create a table of values showing the number of pennies after each flip?

- Create a recursive definition.
- Create an explicit definition.

$$
t_{n+1}=1.5 t_{n}
$$

$$
t_{n}=2.1 .5^{n}
$$

6. A school attendance clerk noticed that the first week after winter break 5 students were out with the flu. By the end of the second week, a total of 9 students had come down with the flu at one time and by the third week 16 had the flu at one time. The attendance clerk noticed the number of students that had the flu was growing exponentially with a growth factor of 1.8.

- Create a table of values showing the number of pennies after each flip?

Week	$\mathbf{1}$	2	3	4	\ldots.
Number of Students that have had the flu	5	9	$\mathbf{1 6}$	29	\ldots
$5(1.8)^{\circ}$					$5(1.8)^{1}$
$5(1.8)^{2}$	$5(1.8)^{3}$				

- Create a recursive definition.
- Create a explicit definition.

$$
t_{n+1}=1.8 t_{n}
$$

$$
t_{n}=5 \cdot(1.8)^{n-1}
$$

- If the model continues how many would have had the flu by the $8^{\text {th }}$ week of school?

$$
t_{8}=5 \cdot(1.8)^{2} \approx \begin{aligned}
& 306 \\
& \text { STUDENTS }
\end{aligned}
$$

5. A student is playing with dice to simulate a declining population. They started with $\mathbf{5 0}$ dice and any dice that land on an 'ODD' number are removed. Then, the remaining dice are rolled and again, the dice that land on an 'ODD' number are removed. The process is repeated until no dice are left. (dice roll simulator https://www.random.org/dicel).

- What should the decay growth factor be in theory? THE PRO BABILTY of AN

$$
\begin{aligned}
& \text { ODD NUMBER is } 50 \% \\
& 100 \%-50 \%=50 \% \text { OR } 0.50
\end{aligned}
$$

- Create a table of values showing the number of pennies after each flip?

- Create a recursive definition.

$$
t_{n+1}=0.5 t_{n}
$$

- Create an explicit definition.

$$
t_{n}=50(0.5)^{n}
$$

6. A population starts with 16 fleas and in a day the population increases by 3 new fleas for every 4 fleas the previous day which can be shown in the following table

Day	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Number of Fleas	$\mathbf{1 6}$	$\mathbf{2 8}$	$\mathbf{4 9}$	$\approx \mathbf{8 6}$	$\approx \mathbf{1 5 0}$

- What is the growth factor?

$$
\begin{aligned}
& \text { THE POPULATION IS IN CREASING } \\
& \text { BY } 3 / 4=0.75=75 \% \text { SO THE GROWTH } \\
& \text { FACTOR } 100 \%+75 \%=175 \%=1.7 \mathrm{~S} .
\end{aligned}
$$

- Create a recursive definition.
- Create an explicit definition.

$$
t_{n+1}=1.75 \cdot t_{n}
$$

$$
t_{n}=16 \cdot(1.75)^{n}
$$

- If the model continues how many fleas would you predict there will be on day 9 ?

$$
\begin{aligned}
& t_{9}=16(1.75)^{9} \approx 2463 \text { FLEAS } \\
& 16(1.75) \wedge 9 \\
& 2462.988708
\end{aligned}
$$

7. Trisha decided to start an exercise program in which on the first day she did 4 sit-ups. The next day she would do 2 more sit-ups than the previous day. She wanted to continue doing 2 more than the previous day for 10 days.

Day	0	2	3	9	9	\ldots
Sit-Ups for the day	4	6 $4+1(2)$	8 $4+2(2)$	10 $4+3(2)$	12 $4+4(2)$	\ldots
Total number of Sit-Ups	4	10	$\mathbf{1 8}$	$\mathbf{2 8}$	40	\ldots

- What type of sequence does the number of sit-ups each day create? ARITHMETIC SEQUENCL

- How many sit-ups will she have done by the end of the 10 days?

$4+6+8+16+12+14+1$
$6+18+20+22$
5 (26)
130
130

$$
\begin{aligned}
& 5 \cdot(26)=130 \text { STUPA } \\
& \text { 个 AIRS OF NUMBERS } \\
& \text { THAT SUM TO } 26
\end{aligned}
$$

- Could you use your technique to find how many sit-ups she would have done if she did this for 20 days?

$$
\begin{aligned}
& t_{n}=4+(n-1) 2 \\
& t_{20}=4+(19) 2 \\
& t_{20}=42
\end{aligned} \quad\left[\begin{array}{l}
4,8,10, \ldots, 1,48,40,42 \leftarrow \text { DAY } 20 \\
10(46)=460 \\
46
\end{array}\right.
$$

- WITH 20 DAYS THAT WOULD MAKE 10 PAIRS OF 46

8. Jason started a new job in which the employer required that he put $\$ 120$ into a retirement fund each month. The company would also add 1% of the amount in his retirement fund each month.

- How much money will be in his retirement account at the end of 6 months?

$$
\$ 738.49
$$

