Adv Mathematical Sec 4.1 -	- Recursion Mo	odels						
Degelon Metaling Recu	<u>irsive & Explic</u>	it	Name:					
Complete the next 3 terms in the sequence and give a RECURSIVE DEFINITION								
(i.e. a rule 1. 2,4,6,8, \O	e on how to go from e	bm one term to the next) $l \rightarrow l$	RULE: $t_{n+1} = t_n + 2$					
2. 2,4,8,16,32 <i>6</i> 4	128	254	_RULE: tot = 2.to					
3. 4, 12, 36, 108, <u>324</u>	, 972	2916	_RULE: $t_{n+1} = 3 \cdot t_n$					
4. 8, 5, 2, -1, -4, -7		, _ 10	RULE: $t_{n+1} = t_n - 3$					
5. 54, 18, 6, 2, 2	$, \frac{2}{9}$, 27	_RULE: tn+1 = tn = 3					
6. 4, 10, 16, 22, 28	, 34	, 40	RULE: Enti= tn +6					
7. 2, 7, 22, 67, 202	, 607	, 1822	_RULE: 2n+1 = 3.tn +1					
8. O, T, T, F, F,S, S, <u>E</u>	, N , T ,	E, T						
9. J , A, S, O, N, D	, <u>3</u> , <u>F</u> ,	M , A						
10. 1, 4, 9, 61, 52, 63, 94,	46 , 18	, 001						
11. <u>A</u> ,,,	<u>, E , F ,</u>	<u>, н, г</u> ,	, K					
		0	Ø					
12. <u>A</u> , B , <u></u> , <u>D</u>	, , , , E E	, , , , C II T T	, KLMN					
C	E F	С Н – С						
12 1		14. Each number shown						
13. 1	13. 1 below follows a certain 1 1 certain the missing 1 2 1 number.		January 20					
21			April 10					
			May 5					
812211								
13112221 SYLLABACS.								
45 Which of the decision hast		ing anguanaa 2						
15. Which of the designs best of								
$\mathbf{O} \mathbf{O} \mathbf{O}$		🕑 🛛 💟	<u> </u>					
16. Which letter comes next in	this series of letters	?						
<u> </u>								
17. Which of the figures below the line of drawings best completes the series?								

Recursive functions vs. Explicit functions

Create a sequence from the following. <u>Recursive Definition</u>: $t_{n+1} = t_n + 4$ and $t_1 = 3$ $n = l: t_2 = t_1 + 4 = 3 + 4 = 7$ $n = 2: t_3 = t_2 + 4 = 7 + 4 = 10$ $t_1 = 2: t_3 = t_2 + 4 = 7 + 4 = 10$ $t_2 = t_3 = t_2 + 4 = 7 + 4 = 10$ $t_3 = t_2 + 4 = 7 + 4 = 10$ Find $t_{10} = 39$

How would you define the following? Recursive Definition – a mathematical function that describes future terms of a sequence based on previous terms. Create a sequence from the following.

Explicit Definition – a mathematical function that describes any term of the sequence given the term number.

18. Create the first few terms of a sequence using the following *Recursive Definitions:*

a.
$$t_{n+1} = 2 \cdot t_n - 1$$
 and $t_1 = 2$
 $t_1 = 2$
 $t_2 = 2 \cdot t_1 - 1 = 2(2) - 1 = 3$
 $0 = 4; t_3 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4 - 1 = 2(9) - 1 = 1$
 $0 = 4; t_5 = 2 \cdot t_4$

$$\begin{array}{c} n = 1: \ a_{2} = 2^{a_{1}} - 1 = 2^{2} - 1 = 3 \\ n = 2: \ a_{3} = 2^{a_{2}} - 1 = 2^{3} - 1 = 7 \end{array}$$

$$\begin{array}{c} n = 3: \ a_{4} = 2^{a_{3}} - 1 = 2^{7} - 1 = 127 \\ n = 2: \ a_{3} = 2^{a_{2}} - 1 = 2^{3} - 1 = 7 \end{array}$$

c.
$$t_n = (t_{n-1})^2 - 4$$
 and $t_1 = 3$
 $t_1 = t_2$
 $t_2 = (t_1)^2 - 4 = (3)^2 - 4 = 5$
 $h = 2: t_2 = (t_1)^2 - 4 = (3)^2 - 4 = 5$
 $h = 3: t_3 = (t_2)^2 - 4 = (5)^2 - 4 = 21$

19. Complete the table.

$$a_n = 3 \cdot a_{n-2} - a_{n-1} - 1$$

 $n \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$

 $a_n \quad 3 \quad 4 \quad 4 \quad 7 \quad 4 \quad 16$

 $a_n \quad 3 \quad 4 \quad 4 \quad 7 \quad 4 \quad 16$

 $a_n \quad a_2 \quad a_g \quad a_4 \quad a_5$

 $n = 5: \quad 0_5 = 3 a_5 - a_4 - 1$

 $= 3(4) - (7) - 1$

 $= 12 - 7 - 1$

 $= 4$

 $n = 6: \quad 0_6 = 3 \cdot a_4 - a_5 - 1$

 $= 3(7) - (4) - 1$

 $= 21 - 4 - 1$

 $= 16$

20. Generate 3 different sequences that could be defined by $t_{n+1} = 2 \cdot t_n + 1$

$$\frac{t_{i} = 1 : 1, 3}{2(n+1)^{2} 2(n+1)^{2} 2(n+1)^{2}} \frac{15}{2(n+1)^{2}} \frac{15}{2(n+$$

c. $t_n = 5 \cdot n - 4$ and determine t_{23}

$$\Lambda = 23: E_{23} = 5(23) - 1$$

= 111

22. Create the first few terms of a sequence using the following <u>mixed</u> *Recursive Definitions:* a. $a_{n+1} = n + 2 \cdot a_n - 1$ and $a_1 = 3$ $a_1 = 3$ $a_2 = 3$ $a_3 = 3$ $a_4 = 3$ $a_4 = 3$ $a_4 = 3$ $a_1 = 3$ $a_2 = 3$ $a_3 = 3$ $a_4 = 3$ $a_2 = 3$ $a_3 = 3$ $a_4 = 3$ $a_4 = 3$ $a_5 = 3$ $a_6 = 1$ $a_7 = 3$ $a_7 =$

$$\bigcap_{i=1}^{n} : \ a_{2} = (1) + 2a_{1} - 1 = 1 + 2(3) - 1 = 1 + 6 - 1 = 6 \bigcap_{i=2}^{n} : \ a_{3} = (2) + 2a_{2} - 1 = 2 + 2(6) - 1 = 2 + 12 - 1 = 13$$

$$n=3: \ a_{4}=(3)+2a_{3}-1$$

= 3+2(13)-1
= 3+26-1=28

b.
$$t_n = 4 \cdot t_{n-2} - t_{n-1} - n$$
 and
n 1 2 3 4
t_n 3 4 5 7

)
£,	tz	tz	ty	

8

$$N = 5: t_5 = 4 \cdot t_3 - t_4 - (5)$$
$$= 4(5) - (7) - 5$$
$$= 20 - 7 - 5 = 8$$