Sec 4.1 - Recursion Models

Complete the next 3 terms in the sequence and give a RECURSIVE DEFINITION

 (i.e. a rule on how to go from one term to the next)1. $2,4,6,8$, \qquad 0 12

14
RULE: $t_{n+1}=t_{n}+2$
2. 2,4,8,16,32 \qquad $64 \quad, \quad 128$ 256 RULE: $t_{n+1}=2 \cdot t_{n}$
3. 4, 12, 36, 108, \qquad 2916 RULE: $t_{n+1}=3 \cdot t_{n}$
4. $8,5,2,-1$, \qquad -4 \qquad
 -

7	-10
2	

\qquad RULE: $t_{n+1}=t_{n}-3$
5. $54,18,6,2$, \qquad $\frac{2}{27}$ RULE: $t_{n+1}=t_{n} \div 3$
$6.4,10,16,22$, \qquad $8 \quad, \quad 34$ 4.40 RULE: $t_{n+1}=t_{n}+6$
7. 2, 7, 22, 67, \qquad 607

1822 RULE: $t_{n+1}=3 \cdot t_{n}+1$

8. O, T, T, F, F,S,S, E,N,T,,$~=, T$
9. J, A, S, O, N, D , J, F, M, A
10. $1,4,9,61,52,63,94$, \qquad , 18 8,001
11. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{H}, \mathrm{I}, \mathrm{K}$
12. $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K} L \mathrm{M}^{0}$
13.

1
11
21
1211
111221
312211
13112221

14. Each number shown below follows a certain rule. Figure out the rule and fill in the missing number.

January	20
April	10
May	5
November	15
July	pO

sullabacs - S
15. Which of the designs best completes the following sequence?

16. Which letter comes next in this series of letters?

17. Which of the figures below the line of drawings best completes the series?

Recursive functions vs. Explicit functions
Create a sequence from the following.
Recursive Definition:

$$
\begin{aligned}
t_{n+1}=t_{n}+4 \text { and } t_{1} & =3 \\
n & =1: t_{2}=t_{1}+4=3+4=7 \\
n & =2: t_{3}=t_{2}+4=7+4=11
\end{aligned}
$$

Find $t_{10}=39$

How would you define the following?
Recursive Definition - a mathematical function that describes future terms of a sequence based on previous terms.

Create a sequence from the following.
Explicit Definition: $\cap=1: \quad t_{1}=4(1)-1=3$

$$
\begin{array}{ll}
t_{n}=4 n-1 & n=2: t_{2}=4(2)-1=7 \\
& n=3: t_{3}=4(3)-1=11 \\
& n=4: t_{4}=4(4)-1=15
\end{array}
$$

Find $t_{10}: n=10:$

$$
\begin{aligned}
t_{10} & =4(10)-1 \\
& =40-1=39
\end{aligned}
$$

Explicit Definition - a mathematical function that describes any term of the sequence given the term number.
18. Create the first few terms of a sequence using the following Recursive Definitions:
a. $t_{n+1}=2 \cdot t_{n}-1$ and $t_{1}=2$

$$
\begin{array}{llll}
2, & 3,5,9,17, \ldots \ldots \\
t_{1} & t_{2} & t_{3} & t_{4} \\
t_{5}
\end{array}
$$

$$
\begin{aligned}
& n=1: t_{2}=2 \cdot t_{1}-1=2(2)-1=\frac{3}{1} \\
& n=2: t_{3}=2 \cdot t_{2}-1=2(3)-1=\frac{5}{1} \\
& n=3: t_{4}=2 \cdot t_{3}-1=2(5)-1=9
\end{aligned} \quad n=4: t_{5}=2 \cdot t_{4}-1=2(9)-1=17
$$

b. $\quad a_{n+1}=2^{\left(a_{n}\right)}-1$ and $a_{1}=2$

$$
\begin{aligned}
& n=1: a_{2}=2^{a_{1}}-1=2^{2}-1=\frac{3}{3} \\
& n=2: a_{3}=2^{a_{2}^{2}}-1=2^{3}-1=7
\end{aligned}
$$

c. $t_{n}=\left(t_{n-1}\right)^{2}-4$ and $t_{1}=3$

$$
\begin{gathered}
3 \\
t_{1}, \\
t_{2},
\end{gathered}, \frac{21}{t_{3}}, \frac{4 / 37}{}, \ldots .
$$

$$
\begin{aligned}
n=4: \quad t_{4}=\left(t_{3}\right)^{2}-4 & =(21)^{2}-4 \\
& =437
\end{aligned}
$$

19. Complete the table.

$$
a_{n}=3 \cdot a_{n-2}-a_{n-1}-1
$$

n	1	2	3	4	5	6				
\mathbf{a}_{n}	3	4	4	7	4	16				
a_{1}								a_{2}	a_{3}	a_{4}

$$
n=5: a_{5}=3 a_{3}-a_{4}-1 \left\lvert\, \begin{aligned}
n=6: a_{6} & =3 a_{4}-a_{5}-1 \\
& =3(4)-(7)-1 \\
& =12-7-1 \\
& =4
\end{aligned} \quad \begin{aligned}
&
\end{aligned}\right.
$$

20. Generate 3 different sequences that could be defined by $t_{n+1}=2 \cdot t_{n}+1$

21. Create the first few terms of a sequence using the following Explicit Definitions:
a. $\quad t_{n}=2 \cdot n-1$

$$
\begin{array}{ll}
n=1: & t_{1}=2(1)-1=1 \\
n=2: & t_{2}=2(2)-1=3
\end{array}
$$

$$
\frac{n, 5,7, t_{4}}{\frac{n}{n}=3: t_{3}=2(3)-1=5}
$$

b. $a_{n}=3^{n}-n$

$$
\begin{aligned}
& 2,7,24,77, \ldots, a_{2}, \frac{a_{3}, a_{4}}{} \quad \frac{n=3: a_{3}=3^{3}-3=24}{} \\
& =7 \quad n=4: a_{4}=3^{4}-4=77
\end{aligned}
$$

c. $t_{n}=5 \cdot n-4$ and determine t_{23}

$$
\begin{aligned}
n=23: \quad t_{23} & =5(23)-4 \\
& =111
\end{aligned}
$$

22. Create the first few terms of a sequence using the following mixed Recursive Definitions:
a. $\quad a_{n+1}=n+2 \cdot a_{n}-1$ and $a_{1}=3$

$$
\begin{array}{llll}
3, & 6, & 13, & 28, \ldots \ldots \\
a_{1} & a_{2} & a_{3} & a_{4}
\end{array}
$$

$$
\begin{aligned}
n=1: a_{2} & =(1)+2 a_{1}-1 \\
& =1+2(3)-1 \\
& =1+6-1=\frac{6}{1}
\end{aligned}
$$

$$
n=3: a_{4}=(3)+2 a_{3}-1
$$

$$
=3+2(13)-1
$$

$$
=3+26-1=28
$$

b. $t_{n}=4 \cdot t_{n-2}-t_{n-1}-n$ and

n	1	2	3	4	5
\mathbf{t}_{n}	3	4	5	7	8
t_{1}					
t_{2}	t_{3}	t_{4}			

$$
\begin{aligned}
n=5: \quad t_{5} & =4 \cdot t_{3}-t_{4}-(5) \\
& =4(5)-(7)-5 \\
& =20-7-5=8
\end{aligned}
$$

